记得以前我在博客中,提到过一种层次化的AI架构,这种架构的核心就是定义了“请求层”的概念,用来分隔决策和行为,并通过行为请求来清晰的定义了决策和行为之间的输入输出关系,不过,当我们仔细审视这个结构的时候,发现其中貌似缺失了对于某种情况的处理,这就是我今天要谈到,如何处理“被动式的行为请求”

一[……]

继续阅读

最近在做项目前期的一些调研的工作,研究并参考了几个引擎和框架的设计,包括内部引擎,商业引擎,和开源引擎,通过比较和学习后,觉得对于游戏中的实体实现,用“组合”的设计模式会比用“继承”的更为便利,想到我早些时候的一个项目里用到的一个引擎,也是实现了组合式的实体,而且对于AI程序员来说也是和“游戏实体”[……]

继续阅读

第一部分 上次我们说到,游戏中的运动系统一般有两种方式,“动画配合运动”以及“运动配合动画”。对于第一种方式,由于是采用运动函数或者经验数据表,所以可以很简单的将“未来时间”带入其中,来预测未来某一时刻的运动结果。但对于第二种情况,因为所有的运动结果都是从动画中取得的,如果不知道动画信息,就无法[……]

继续阅读

前端时间举家出游了一次,加上国庆期间一直跑东跑西,博客的更新就一直没跟上,距上一篇文章也是好久了呢,有时感觉一个人维护也有点小累,所以如果大家有好的想法,好的分享,也可以投稿给我,我想能有这样一个分享的平台,让志同道合的朋友一起讨论学习,也算是为中国游戏技术的发展贡献点绵薄之力,虽然我是付不起稿费的[……]

继续阅读

前段时间,谈到了一种层次化的AI架构,通过“请求”来隔离出“决策层”和“行为层”,这种架构的核心是通过“请求”来起到承上启下的作用,并由此得出当前AI所应当有的行为,所以可以称之为“请求导向(Request-Oriented)”的结构。这种结构比较适用于需要频繁做AI决策的游戏场合,比如体育类游戏等[……]

继续阅读

这篇文章针对于已了解行为树和黑板的读者,如果不是很了解,请参考此处(123)。
黑板(Blackboard)是一种数据集中式的设计模式,一般用于多模块间的数据共享,我在做行为树的过程中,发现黑板非常适合作为行为树的辅助模块来使用,这次就来谈谈如何在行为树中使用黑板。

行为树的决策一般要依[……]

继续阅读

记得在以前的一篇文章中谈到了一种类似于双缓冲的AI结构,最近在整理一些东西的时候,发现这样的AI结构具有一定的通用性,而且层与层之间耦合度相对较低,作为一种层次化的AI架构,非常值得一谈。

在我的脑海中,AI一般分为两个部分,一个是决策(Decision)部分,一个是行为(Behavior)部[……]

继续阅读

双缓冲(double buffer)是在渲染中用到的基本技术,目的是为了提高绘图速度,防止屏幕的闪动,原理可以简述如下,生成两块内存,一块作为后缓冲(background buffer),一块为前缓冲(foreground buffer),前缓冲内存的是实际显示在屏幕上的内容,后缓冲可以称为工作缓冲[……]

继续阅读